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The results obtained by ray-tracing method can be regarded as benchmarks for its good accuracy. How-
ever, up to now, this method can be only used to solve radiative transfer within medium confined
between two specular surfaces or two diffuse surfaces. This article proposes a hybrid ray-tracing method
to solve the radiative transfer inside a plane-parallel absorbing–emitting–scattering medium with one
specular surface and another diffuse surface (S–D surfaces). By the hybrid ray-tracing method, radiative
transfer coefficients (RTCs) for S–D surfaces are deduced. Both surfaces of the medium under consider-
ation are considered to be semitransparent or opaque. This paper examines the effects of scattering
albedo, opaque surface emissivity and anisotropically scattering on steady-state heat flux and transient
temperature fields. From the results it is found that the effects of anisotropic scattering is more for a big-
ger optical thickness medium; and keeping other optical parameters unchanged, anisotropic scattering
affects transient temperature distributions so much in a small refractive index medium.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative heat transfer or coupled heat transfer by radiation and
conduction plays an important role in many industrial applica-
tions. These applications includes radiative cooling of space droplet
radiator, infrared heating and infrared drying, optical crystals
growth, ceramic components for high temperature use, glass form-
ing for manufacturing and tempering of glass windows, highly
backscattering protective insulation systems for reentry into atmo-
sphere, porous burners and insulation systems, measurement for
the thermal characterization of semitransparent materials as well
as selected high temperature components in advanced aircraft en-
gines. The key to coupled radiation and conduction is seeking solu-
tion to radiative transfer problem. The precise prediction of
radiative heat transfer is indispensable to improve their design,
so an accurate solution method for radiative transfer equation
(RTE) has been demanded.

There are many different methods of obtaining solutions of the
RTE as reported in the literature. For instance, there are zone meth-
od [1], Monte Carlo method (MCM) [2], P–N spherical harmonics
method [3], discrete ordinates method (DOM) [4], discrete transfer
method (DTM) [5], finite-volume method (FVM) [6], finite element
method (DOM) [7], meshless method [8], etc.

Much of the previous work on radiative heat transfer only con-
sidered purely absorbing or isotropic scattering. However, it is well
ll rights reserved.
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known that in the medium including real particles, fibers, or impu-
rities, the anisotropic scattering of thermal radiation can play a sig-
nificant role on overall heat transfer. Consequently it is necessary
to consider anisotropic scattering effects in radiative heat transfer.
Much attention has been focused by many researchers on this
problem [9–15].

As we know, typical numerical methods for radiative transfer are
the finite-volume method (FVM), the discrete ordinates method
(DOM), the discrete transfer method (DTM), the finite element
method (FEM) and the Monte Carlo method (MCM). Generally, most
of them will produce errors, the ray effect and false scattering. Ref.
[16] pointed out that the false scattering was generated by the dis-
cretization of the derivative term of radiative intensity along the
space coordinate, and the ray effect was produced by the discretiza-
tion of the solid angle. So the false scattering exists in the FVM, FEM
and DOM, and the ray effect exists in the FVM, FEM, DOM, and DTM
[16]. The advantage of the ray-tracing method is that when solving
radiative transfer equation, the radiative intensity does not need to
be discretized along the space coordinate, and the solid angle need
not be discretized either but is directly integrated. Thus, the meth-
od completely avoids the ray effect and the false scattering, and the
results obtained by this method can be regarded as benchmarks for
its good accuracy. Furthermore, the physical meaning of this meth-
od is clear, simple and visual, and it can well reveal the physical es-
sence of the radiative transfer.

Using the ray-tracing method, previous work can but solve
the radiative transfer in the medium having two specular surfaces
[17–20] or two diffuse surfaces [21]. For the medium having one
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Nomenclature

C heat capacity per unit volume of the medium, J m�3 K�1

h1, h2 convective heat transfer coefficient at surfaces of S1 and
S2, respectively, W m�2 K�1

H1, H2 convection–radiation parameter, H1 = h1/rT3 and
H2 ¼ h2=rT3

r
L thickness of the medium, m
k thermal conductivity of the medium, W m�1 K�1, n = 1,

2
kie, kiw harmonic mean thermal conductivity at interface ie and

iw of control-volume i, respectively
N k=ð4rT3

r LÞ, conduction–radiation parameter of the med-
ium

Mt total number of control-volumes of the medium
n refractive index of the medium
qr

i;e; qr
i;w radiative flux passing through the right and the left

interface of control-volume i, respectively
qt total heat flux of radiation and conduction at steady-

state
S1, S2 boundary surfaces
S�1, S+1 black surfaces representing the surroundings
(SuSv), (SuVj), (VjSu), (ViVj) absorbing RTCs of surface vs. surface,

surface vs. volume, volume vs. surface and volume vs.
volume

[SuSv], [SuVj], [VjSu], [ViVj] scattering RTCs of surface vs. surface,
surface vs. volume, volume vs. surface and volume vs.
volume

T absolute temperature, K
Tg1, Tg2 gas temperatures for convection, K
Tr, T0 reference temperature, initial temperature, K

T�1, T+1 temperatures of black surroundings S�1 and S+1,
respectively, K

t, Dt, t* physical time, s; time interval, s; dimensionless time,
ð4rT3

r =CLÞt
x coordination or distance along the direction of medium

thickness, m
b common ratio of a geometric progression
Dx thickness of each control-volume of the medium, m
(dx)ie, (dx)iw distance between nodes i and i + 1 and between i and

i � 1, respectively
e1, e2 emissivities of surfaces S1 and S2, respectively
g 1 �x
j extinction coefficient of the medium, m�1

q1, q2 reflectivities of the opaque surfaces S1 and S2, respec-
tively

q2,in, q2,out diffuse reflectivities of the semitransparent surface S2

facing the medium and surrounding, respectively
r Stefan–Boltzmann constant = 5.6696 � 10�8 W m�2 K�4

s optical thickness, equal to jL
Ur

i radiative heat source of the control-volume i
x scattering albedo of the medium

Subscripts
ie, iw right and left interface of control-volume i
�1, +1 S�1 and S+1 denoting black surroundings

Superscript
r radiation
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specular surface and another diffuse surface (S–D surfaces), the
radiative transfer problem has not been solved by this method.
In this paper, according to the directional reflection behavior of
the specular surface and hemispherical reflection behavior of the
diffuse surface, we develop a hybrid tracing scheme based on the
ray-tracing method to solve the radiative transfer in a participating
medium having S–D surfaces. By this method the RTCs for the
medium with such reflecting characteristics are also deduced. Lo-
cal radiative heat source in the energy equation, expressed in
terms of RTCs, is deduced using the nodal analyzing method. The
effects of scattering albedo, opaque surface emissivity and aniso-
tropically scattering on steady heat flux and transient temperature
fields are investigated.
2. Basic equations and boundary conditions

We consider a plane-parallel participating medium with its
thickness of L. Both boundary surfaces of the medium are supposed
to be semitransparent or opaque. The left surface S1 is specular and
the right one S2 is diffuse. The medium is irradiated by two black
surfaces S�1 and S+1, indicating the surrounding of temperatures
T�1 and T+1, respectively. Between S1 and S�1 and between S2

and S+1 are convective gases with temperatures of Tg1 and Tg2.
Along the medium thickness, it is divided into Mt control-volumes,
and the total number of nodes is Mt + 2, with node 0 locating S1 and
node Mt + 1 locating S2.

Between the time intervals t and t + Dt, in a fully implicit dis-
crete format, the transient energy equation for coupled radiation
and conduction can be written as

CDx
Tmþ1

i � Tm
i

Dt
¼ kmþ1

ie ðTmþ1
iþ1 � Tmþ1

i Þ
ðdxÞie

� kmþ1
iw ðTmþ1

i � Tmþ1
i�1 Þ

ðdxÞiw
þUr;mþ1

i ð1Þ
where Ur
i is the radiative source of control-volume i. By the nodal

analyzing method, Ur
i can be expressed as:

Ur
i ¼ qr

i;eðTÞ � qr
i;wðTÞ ¼ qr

i;eðTÞ � qr
i�1;eðTÞ ð2Þ

where qr
i;e is the radiative flux passing through the right interface of

control-volume i, and for the gray medium it is written as

qr
i;e ¼ r ðn2

Su
½SuSv �T4

u � n2
Sv
½SvSu�T4

vÞ þ
Xi

j¼1

ðn2
Su
½SuVj�T4

u � n2½VjSu�T4
j Þ

(

þ
XMt

j¼iþ1

ðn2½VjSv �T4
j � n2

Sv
½SvVj�T4

vÞ

þn2
XMt

j¼iþ1

Xi

l¼1

ð½VjVl�T4
j � ½VlVj�T4

l Þ
)

ð3Þ

where such as [SuSv], [SuVi], [ViVj], [SvVi] and so on are RTCs, deduced
by the hybrid ray-tracing method presented in Section 3 of this pa-
per. For the semitransparent boundaries, ‘‘Su” denotes ‘‘S+1” and
‘‘Sv” denotes ‘‘S�1”, and for the opaque boundaries, ‘‘Su” denotes
‘‘S2” and ‘‘Sv” denotes ‘‘S1”.

For the semitransparent boundaries, the equation for boundary
condition at surface S1 is written as

2k1ðT1 � TS1 Þ=Dx ¼ h1ðTS1 � Tg1
Þ ð4Þ

And for the opaque boundaries, it is written as

qr
S1
þ 2k1ðT1 � TS1 Þ=Dx ¼ rðe1T4

S1
� T4

�1Þ þ h1ðTS1 � Tg1
Þ ð5Þ

where qr
S1

is radiative heat flux at S1 and written as

qr
S1
¼ rn2 ½S2S1�T4

S2
� ½S1S2�T4

S1

� �
þ
XMt

j¼1

½VjS1�T4
j � ½S1Vj�T4

S1

� �( )

ð6Þ



H.-L. Yi et al. / International Journal of Heat and Mass Transfer 52 (2009) 4229–4235 4231
From above equations, major difficulty in coupled radiative–con-
ductive heat transfer problem is the solution to the local radiative
source Ur

i , and the key to solving Ur
i , according to Eq. (3), is in

deducing the RTCs.

3. A hybrid ray-tracing method for the deduction of RTC

RTC of element i (surface element or volume element) with re-
spect to element j is defined as quotient of the radiative energy ab-
sorbed by element j to the radiative energy emitted by element i.
When rays hit a specular surface at an angle, the angle of reflection
is equal to the angle of incidence; therefore, the radiative transfer
in a medium having specular surfaces can be directionally traced
[20]. When rays strike a diffuse surface at an angle, the reflected
rays are distributed uniformly over all hemispherical space and
the angle of reflection is not always equal to the angle of incidence;
therefore, the radiative transfer in a medium having diffuse sur-
faces cannot be directionally traced. In this case all the incident
rays from hemispherical space can be traced to study the radiative
transfer [21]. In Ref. [20], RTCs for the medium having specular
surfaces were deduced by the directional ray-tracing method,
and in Ref. [21], RTCs for the medium having diffuse surfaces were
deduced by the hemispherical ray-tracing method. In present
work, based on the different reflection characteristics of specular
surfaces and diffuse surfaces, a hybrid ray-tracing method is pro-
posed to deduce the RTCs for the medium having S–D surfaces.
An absorbing RTC for opaque boundaries, for example (S1S2), is
taken as an example to illustrate the deduction of RTCs using the
hybrid ray-tracing method. According to the radiative transfer
mechanism for anisotropic scattering medium [20] and using the
hybrid ray-tracing method, the scattering RTC [S1S2] can be also
deduced, and the deduction is not given in this paper.

Let us first give two expressions for the deduction of RTC (S1S2)
for convenience:

f ðx; hÞ ¼ expð�jx= cos hÞ ð7Þ

FðxÞ ¼ 2
Z p=2

0
f ðx; hÞ sin h cos hdh ð8Þ

The energy emitted by the specular surface S1 transfers through
the medium between two surfaces S1 and S2, and is finally ab-
sorbed by the medium and the surfaces. Now we analyze the trans-
fer process for the energy quotient absorbed by S2. The transfer
process includes two sub-processes: (1) the sub-process of the en-
ergy emitted by specular surface getting to diffuse surface, and (2)
the sub-process of the energy emitted by diffuse surface getting
back to diffuse surface after being reflected by the specular surface.
These two sub-processes constitute a complete process of radiant
energy transfer from S1 to S2, as seen in Fig. 1.

Let us first analyze the first transfer sub-process. The quotient
of the radiant energy emitted by the specular surface S1 at an angle
of h getting to the diffuse surface S2 for the first time is
1S 2S

(1)

(2)

Fig. 1. Sketch for two sub-processes of the radiant energy emitted by S1 transfer-
ring to S2.
ðS1S2Þ1 ¼ f ðL; hÞ

Then we examine the second transfer sub-process. The radiant en-
ergy emitted by the diffuse surface S2 at an angle of h first gets to
the specular surface S1, and after being reflected by S1, it finally gets
back to S2. The quotient of radiant energy with a emission angle of h
carried in this sub-process is f(L,h)q1f(L,h). So the quotient of radiant
energy emitted by the diffuse surface S2 that is distributed uni-
formly over all hemispherical space getting to the specular surface
S1 and finally getting back to S2 after being reflected is

2
Z p=2

0
f ðL; hÞq1f ðL; hÞ sin h cos hdh ¼ q1Fð2LÞ

According to the above analysis, we can obtain the quotient of the
radiant energy emitted by S1 at an angle of h reaching S2 for the sec-
ond time (S1S2)2 = f(L,h)q2q1F(2L). By the similar analysis, we can
obtain the energy quotient getting to S2 for the third time

ðS1S2Þ3 ¼ f ðL; hÞq2q1Fð2LÞq2q1Fð2LÞ

We can also obtain the expressions of (S1S2)4, (S1S2)5 and so on.
It is obvious that the series of (S1S2)1, (S1S2)2, (S1S2)3 and so on is

a geometric progression with a common ratio of b = q1q2F(2L)
(b < 1). As a result, we can have total quotient of radiant energy
emitted by S1 at an angle of h getting to S2:

X1
n¼1

ðS1S2Þn ¼
f ðL; hÞ
1� b

Finally, considering emission of two opaque surfaces, we can get the
expression of (S1S2) as following

ðS1S2Þ ¼ 2e1e2

Z p=2

0

X1
n¼1

ðS1S2Þn sin h cos hdh ¼ e1e2FðLÞ
1� b

ð9Þ

By the similar deduction, we can also obtain (S�1S+1) for semi-
transparent boundaries. If the specular surface S1 is semitranspar-
ent, the polarized effects of radiation must be considered, and the
reflectivity of the specular surface S1 for polarized parallel and per-
pendicular incident radiation is determined in Ref. [22]. If the dif-
fuse surface S2 is semitransparent, the determination of the
reflectivity of the diffuse surface S2 can be seen in Ref. [23].

4. Validation of radiative transfer model and numerical method

4.1. Validation of RTCs

The correctness of RTCs describing the information of radiative
transfer could be used to validate the radiative transfer model
developed by the hybrid ray-tracing method. From the reversibility
of radiative transfer and the conservation of radiant energy, RTCs
must satisfy the relations of reciprocity and integrality as follows.

Reciprocity relation for volume element vs. volume element can
be written as:

½ViVj� ¼ ½VjVi� ð10aÞ

If two surfaces S1 and S2 are opaque, the reciprocity relation for sur-
face element vs. volume element is

½SuVi� ¼ ½ViSu� ð10bÞ

and that for surface element vs. surface element is

½S1S2� ¼ ½S2S1� ð10cÞ

If the two surfaces are semitransparent, the reciprocity relation for
surface element vs. volume element can be written as

n2
S�1 ½S�1Vi� ¼ n2½ViS�1� ð10dÞ
ð1� q2;inÞ½Sþ1Vi� ¼ ð1� q2;outÞ½ViSþ1� ð10eÞ



Table 1
Dimensionless heat flux in steady-state for various values of scattering albedo,
qt=rT4

r .

x = 0.1 x = 0.9

S–D S–S S–D S–S

0.29710 0.33420 0.34905 0.38645
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and that for surface element vs. surface element is

ð1� q2;outÞ½S�1Sþ1� ¼ ð1� q2;inÞ½Sþ1S�1� ð10fÞ

where q2,in is the reflectivity of the diffuse surface S2 facing the
medium, and q2,out is the reflectivity of the diffuse surface S2 facing
the surrounding. The determination of them can be seen in Ref. [23].

Integrality relations for RTCs can be written as:

½ViSu� þ ½ViSv � þ
XMt

j¼1

½ViVj� ¼ 4jgDx ð11aÞ

½SuSu� þ ½SuSv � þ
XMt

j¼1

½SuVj� ¼ eu ð11bÞ

By calculating, Eqs. (10) and (11) are well satisfied with RTCs, which
shows that the radiative transfer model for the medium having S–D
surfaces developed in this paper is rational and correct.

4.2. Linearization of radiative source term

The radiative source term Ur
i is a nonlinear function of Ti, so it

must be linearized as follows:

Ur;m;nþ1
i ¼ Scm;nþ1

i þ Spm;nþ1
i Tm;nþ1

i ð12Þ

with Scm;nþ1
i ¼ Ur;m;n

i � ðdUr;int
i =dTiÞm;nTm;n

i , and Spm;nþ1
i ¼ ðdUr

i =dTiÞm;n,
where the superscript ‘‘ m ” denotes the ‘‘ mth ” time step, and ‘‘ n ”
denotes the ‘‘ nth ” iteration in the ‘‘ mth ” time step. After lineari-
zation of the nonlinear term in Eq. (1), linear equations may be ob-
tained and solved by TDMA (Tri-Diagonal Matrix Algorithm) to get
temperatures at all nodes.

5. Transient radiative heat transfer

A plane-parallel slab of semitransparent participating medium
having two opaque or semitransparent surfaces with L = 0.02 m
and C = 0.1 � 106 J m�3 K�1 is considered. Using the first three
terms of Legendre polynomial series expansion approximates the
characteristics of the anisotropic scattering within a semitranspar-
ent material and the general mathematical expression for various
scattering phase functions is given as below:

Uðh; hsÞ ¼ 1þ a1 cos h cos hs

þ 1
4

a2ð3 cos2 h� 1Þð3 cos2 hs � 1Þ ð13Þ

where h is incident angle and hs is scattering angle. The case a1 = 0
and a2 = 0 corresponds to isotropic scattering phase function U0,
a1 = 1 and a2 = 0 to fully forward scattering phase function U1,
a1 = �1 and a2 = 0 to fully backward scattering phase function U2,
a1 = 0 and a2 ¼ 1

2 to Rayleigh scattering phase function U3, and for-
ward mixed scattering phase function U4 is defined as the case of
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0.5
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0.8
Steady state

t*=2.0

t*=1.0

T
/T
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x/L

 S-D
 S-S

t*=0.5

((a)

Fig. 2. Effects of scattering albedo on transient temperature distributi
a1 = 1.5 and a2 ¼ 1
2. The effects of scattering albedo, opaque surface

emissivity and anisotropic scattering on steady-state heat flux and
transient temperature distributions are analyzed in this section.

5.1. Effects of scattering albedo

Parameters for this calculation are taken as: s = 2.0, n = 2.0,
T0 = 500 K, T+1 = Tg1 = Tg2 = 500 K, T�1 = Tr = 1200 K, N = 0.005,
and H1 = 2.0, H2 = 0. The medium is considered to be Rayleigh scat-
tering of radiation and has two semitransparent surfaces. Transient
heat transfer is examined for different scattering albedoes such as
x = 0.1 and x = 0.9. In this section, the results of ‘‘S–S”, obtained by
the ray-tracing method [20], is for the medium with two specular
surfaces, and the results of ‘‘S–D”, obtained by the hybrid ray-trac-
ing method, is for the medium having one specular surface and the
other diffuse surface.

Radiation emitted by black surrounding S�1 with high temper-
ature can penetrate the semitransparent surface S1 and transfers
within the medium. The left surface of the medium is radiatively
heated by black surrounding S�1 and simultaneously cooled by
convection, which results in temperature peaks appearing in the
areas close to S1, as shown in Fig. 2. In the medium having a small
scattering albedo of 0.1, temperature profiles for the areas close to
the radiatively heating surface S1 is very steep, plotted in Fig. 2a. If
the scattering albedo is so big, for example x = 0.9, the correspond-
ing temperature curves become somewhat gentle, seen in Fig. 2b.
From Fig. 2, we can also observed that the transient temperature
peak at a certain time is smaller and steady temperature peak is
bigger for the medium with big scattering albedo compared to
the medium having small scattering albedo.

Table 1 shows the effects of scattering albedo on steady total
heat flux. It is noted that from Table 1 with the increase of scatter-
ing albedo, total heat flux in steady-state increases, and the relative
heat flux difference decreases between media with S–D surfaces
and S–S surfaces.

From Fig. 2 and Table 1 it can be further observed that temper-
ature curves for the medium with S–D surfaces are higher than
those for the medium having S–S surfaces at any time, and in stea-
dy-state, total heat flux through the medium with S–D surfaces is
smaller than that with S–S surfaces. It is shown that in the medium
0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8 Steady state

t*=2.0

t*=1.0

T
/T

r

x/L

 S-D
 S-S

t*=0.5

b)

ons in a Rayleigh scattering medium: (a) x = 0.1 and (b) x = 0.9.
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having two semitransparent surfaces, the diffuse reflection can
weaken radiative heat transfer compared to the specular reflection.

5.2. Effects of diffuse surface emissivity

In this section, calculation parameters are taken as: s = 2.0,
n = 2.0, x = 0.5, T0 = 750 K, T+1 = Tg2 = Tr = 1500 K, T�1 = Tg1 =
750 K, N = 0.05 and H1 =1, H2 = 2.0. Rayleigh scattering is consid-
ered and two surfaces are supposed to be opaque. The effect of dif-
fuse surface emissivity on the coupled radiative and conductive
heat transfer is investigated as following.

The specular surface S1 is cooled by convection and radiates
heat to the left black surrounding S�1, and the diffuse surface S2

is irradiated by the right black surrounding S+1 with high temper-
ature and heated by convection. S2 partly absorbs the external radi-
ation emitted by S+1 and heats the medium by coupled radiation
and conduction. From Fig. 3 we can see that the temperature dis-
tributions in the medium having a bigger e2 are always higher than
those having a smaller e2, resulting from more external radiation
being absorbed by the surface with a bigger e2. Steady radiative
heat flux through the medium with a bigger e2 is also observed
to be larger than that with a smaller e2.

5.3. Effects of anisotropic scattering

Common parameters of thermal properties and radiative prop-
erties are taken as: x = 0.9, N = 0.005, and H1 = 1.0, H2 = 1.0, and
temperatures as input data are taken as: T0 = 500 K, T�1 = Tg1 =
!500 K, T+1 = Tg2 = Tr = 1500 K. The medium under consideration
is supposed to have two semitransparent S–D surfaces. The effects
of anisotropic scattering characteristics are examined on transient
coupled heat transfer dominated by radiation when the right
surface S2 is heated by convection and irradiation.
0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.7

0.8

T
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(a)

Fig. 3. Effects of emissivity on coupled heat transfer in a Rayleigh scattering medium: (a)
state.
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Fig. 4. Effects of anisotropic scattering on coupled heat transfer in a medium: (a) transi
Fig. 4 gives the results for s = 2.0 and n = 2.0, Figs. 5 and 6 plot
the results for s = 20, and Table 2 tabulates the results for n = 2.0.
For the bigger refractive indices such as n = 2.0 and n = 5.0, as seen
in Figs. 4a and 5b and c, in different areas of the media having dif-
ferent scattering phase functions, the temperatures have different
distribution characteristics. In areas close to the right hot surface
S2, the temperature distribution for scattering phase function U2

is highest, followed by U3, and the lowest temperature distribution
is for scattering phase function U4. In the left areas away from S2,
the opposite trend is observed, and the temperature distribution
difference is larger between media having different scattering
phase functions compared to the right areas close to S2. Comparing
Fig. 4a with Fig. 5b, we can see that the temperature distribution
characteristics are more significant for bigger optical thickness.
For the same optical thickness, refractive index affects temperature
distributions in media having different scattering phase functions
so much. For a small refractive index, for example, n = 1.1, from
Fig. 5a it is seen that in entire region of the medium the tempera-
ture distributions for U4 are highest, followed by U1, and for U2 it
is lowest. As the refractive index increases, the curves of tempera-
ture distribution in media having different phase functions inter-
sect each other in the areas close to the hot surface S2. From
Fig. 5b and c it is observed that in the region at the right of the
point of intersection, temperature curves for U4 are lowest and
those for U2 are highest; in the region at the left of the point of
intersection, the temperature distribution characteristics are oppo-
site to the right region. From Fig. 5b and c, we also find that the
smaller the refractive index is, the smaller the right region is.
When the refractive index is small enough, the right region where
the temperature curves for U4 are lowest and those for U2 are
highest disappears, as seen in Fig. 5a. Comparing Fig. 4 with
Fig. 5 we find that the increase of optical thickness can enhance
the effects of anisotropic scattering; for the same optical thickness,
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Table 2
Effects of anisotropic scattering on dimensionless heat flux qt=rT4

r in steady-state for different optical thickness.

s = jL = 2.0 s = jL = 20.0

U1 U2 U3 U4 U1 U2 U3 U4

0.49062 0.44729 0.46999 0.50432 0.24693 0.16796 0.20327 0.28239
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the smaller the refractive index is, the more the anisotropic scat-
tering affects transient temperature distributions in the medium.
Next, we discuss the effects of anisotropic scattering on the heat
flux. From Figs. 4b and 6 it is found that in the medium having dif-
ferent phase functions, the curves of steady radiative flux for U4 is
highest, followed by U1, and that for U2 is lowest. The same chang-
ing law with different phase functions can be observed for steady
total heat flux from Table 2. Relative to temperature distributions,
anisotropic scattering has a more influence on the distributions of
heat flux. In addition, when the refractive index is large, as shown
in Fig. 6c, the steady-state radiative heat flux changes rapidly in the
regions near the surfaces, and the curves of radiative heat flux
through central regions can be approximated as straight lines.

6. Conclusions

According to the different reflecting characteristics of specular
surface and diffuse surface, a hybrid ray-tracing method is devel-
oped for the solution to radiative transfer inside a medium having
one specular surface and the other diffuse surface. By this method
the RTCs for specular–diffuse surfaces is deduced and the corre-
sponding radiative heat source in energy equation for coupled radi-
ation and conduction is obtained. The effects of scattering albedo,
diffuse surface emissivity and anisotropic scattering on transient
temperature distributions and steady-state heat flux are investi-
gated. From the results obtained above we may draw some conclu-
sions as follows.

(1) In the medium having two semitransparent surfaces, the dif-
fuse reflection can weaken radiative heat transfer compared
to the specular reflection, which results in temperature
curves for the medium with S–D surfaces higher than those
for the medium having S–S surfaces at any time.

(2) In the medium with semitransparent surfaces, a bigger scat-
tering albedo can cause smaller temperature peaks in tran-
sients, but at steady-state, it can cause larger temperature
peaks.

(3) Increase of the optical thickness can enhance the effects of
anisotropic scattering; and for the medium having the same
optical thickness, the smaller the refractive index is, the
more the anisotropic scattering affects transient tempera-
ture distributions. When the refractive index is very small,
in entire regions of the medium, temperature curves for for-
wardly scattering phase functions are higher than those for
backwardly scattering phase functions. Distribution curves
of radiative heat flux for forwardly scattering phase func-
tions are higher than those for backwardly scattering phase
functions, regardless of the values of refractive index.
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